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Abstract
The polynomials £, and O,, having degrees n and m, respectively, with £, monic, that solve the approximation problem

P(z)e "+ Qulz)y=0(=""""")

will be investigated for their asymptotic behavior, in particular in connection with the distribution of their zeros. The
symbol ¢ means that the left-hand side should vanish at the origin at least to the order n + m + 1. This problem is
discussed in great detail in a series of papers by Saff and Varga. In the present paper, we show how their results can
be obtained by using uniform expansions of integrals in which Airy functions are the main approximants. We give
approximations of the zeros of P, and O, in terms of zeros of certain Airy functions, as well of those of the remainder
defined by £, .(z) = Pz)e " + Ou(z). © 1997 Elsevier Science B.V. All rights reserved.

Keywords: Padé polynomials; Asymptotic behavior; Uniform asymptotic methods; Exponential function; Confluent hyper-
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1. Introduction

It is well known (cf. [9]) that the solution of the Padé approximation problem for the exponential
function, namely,

P,,(Z) e-: + Qm(:) — C(‘(Z'H"’”“) as 7z — 0’
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where P, and Q,, are polynomials of degree n and m, respectively, with B, monic, is given by

AR

P(z)= "4+ zye T d,

m! Ju

R

Onl(z) = ("t - z)"e T dr

m! o
Explicit forms are (cf. [9. p. 433])

"imAn—k\Z
P(z)=n! Z < m ) ok

k=0
" imn—kY (=)
Qm(— ) = _”! AZ% ( n ) l\" :

Let the remainder £, ,, be defined by
En.m(:) = RI(:)ev: + Q"l(:)

then

(_ 1 )m:m+n+l

§
E, .(2)= /u (1 —u)"e ™ du.

m!
The quantities P,,O,.E,.» can be expressed in terms of (confluent) hypergeometric functions and
Laguerre polynomials. We have
P(z)=U(-n,—n—m,z
=" U(m+ Ln+m+2,2)
= (=1)n!L;""""(2),

1
On(z)= T U(-m,—n —m,—z)
m!

!
:_%(_:)IHM-H Un+Ln+m + 2, —z)
m.

— _(_1 )mn!L”—ln—m—l(_:),

(_1 )m+ln!zn+m+l

E,n(z)= mM(” +ln+m+2,-2)
(_1 )r;1+ln!:pz+rn+l i
m e Mm+lLn+m+2,z2).

For the diagonal case n-=m these functions can be written in terms of Bessel functions.
We have the following symmetry. Write

B(z)=P(n,m,z), On(z)=0(n,m,z).
Then

m!'P(n,m,z) = —n! Q(m,n, —z).
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For 1nv§stigating the asymptotic behavior of the functions it is convenient to use the following
contour integrals:

(__ 1 )”I’l! . ev:“,
P,(z)= ,
( ) 21ti AU W”“(W—{— 1)m+1 du, (11)
(~1)ynle~: -
m\Z) = - ,
Q ( ) 2mi //_, wyn-H(W + 1)m+l dw, (12)
where %, %, are small circles around the points 0 and —1. It follows that
(—1)ynle=: [ "
En m(Z) = . ;
n(2) 21 /,( whitl (w4 [ ym ! dw, (1.3)

where ¢ is a circle around the points 0 and —1.

In a sequence of papers, Saff and Varga investigated the polynomials P,,(Q,, and the remainder
E, ., and the distribution of their zeros, for large values of n,m with fixed ratio ¢ = m/n (the final
paper appeared in 1978). They used saddle point methods for the integrals defining the U- and
M -functions (not the contour integrals) and found curves in the complex z-plane along which the
zeros are cumulating. For m =0 their results agree with the earlier results obtained by Szegé on the
distribution of the zeros of the exponential polynomial

n 7/\»
e (z)=) —.
k=0 k!

The purpose of the paper is:

e To give a new approach for locating the zeros of the quantities P,,Q,, and E, ,, by using uniform
asymptotic approximations for these functions in terms of Airy functions.

e To give approximate values of the zeros of B,,Q, and E,,, in terms of zeros of certain Airy
tunctions.

e To become familiar with methods that possibly can be used in the more complicated quadratic
Hermite-Padé Type [ approximation problem for the exponential function, which problem is
discussed in [4].

In Section 2, we consider the diagonal case n = m. In [5] this has been done by using the
Sommerfeld integrals for the corresponding Bessel functions. Now we use different integrals in
order to become familiar with the more difficult general case, which we consider in Section 3. In
that section we also give approximations of the zeros of B, 0, and E,, in terms of zeros of Airy
functions. In addition, we compare our description of the curves along which the zeros accumulate
with that of [11]. In Section 4 we give more details on uniform Airy-type expansions, and how to
obtain asymptotic expansions for the zeros of functions approximated in this way, with applications
to P,, O E, . In Section 5 we give more details on the conformal mapping used in Section 3, and
in Section 6 we discuss aspects of numerical calculations based on the expansions for the zeros
of P,0Q,.E, .. We give an interpretation of the zeros of B,,Q, in the lower half-plane, and in
connection with this we discuss the singularities of a parameter 1 occurring in the expansions. In
Section 7 we give a few remarks on the quadratic Hermite—Padé Type I approximations to the
exponential function.
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2. The diagonal case (n =m)

In [5] we have shown for the case n#=m how we can use relations between F,,Q,, and E,,, and
Bessel functions to obtain Airy-type approximations. In the present section we show how the same
results can be obtained by using the integrals given in (1.1)—=(1.3). These integrals are more difficult
to handle than the integrals used in our earlier paper for the Bessel functions; there we used the
Sommerfeld integrals. We start with the diagonal case, because it gives a good introduction to the
general case.

We consider (1.1) and write the integral in the form

P.(2izn) =

1\ —ndiw)
( l)n./ ¢ dw, (2.1

2m ow(w+1)
where the phase function ¢ is given by
O(w) =2iow + Inw + In(w + 1),

and %, is a contour around the origin. Because of the logarithms the function ¢ is not single valued
on a circle around the origin. However, in the asymptotic analysis we deform the original contour
and extend it to infinity (in such a way that Jizw = 0,Rizw > 0 along the path at infinity). We
introduce branch lines for Inw and In(w + 1), starting from w =0, w = —1, respectively, into that
direction. For example, when = =1+1, we have izw= —u—v+1i(u —v), where we write w = u+ir.
Hence, the branch line for Inw runs from the origin along the diagonal v = v with u <0, v <0.
Furthermore, in this example we assume that the phase of w belongs to the interval [—%n, %n].
The saddle points are

. 41 1
wE=—la i Vi-2)=-1+liet, = : (2.2)
- S cosht
We take 0 <z < 1. 7> 0; later we take z complex, in particular in a neighborhood of z = 1. We
see that the saddle points are located on the vertical line Rw=—1. Writing w= -% + %iv, we obtain

P~ +4r)=—zr+In(1 + %) — Ind +i(n — 2).

Hence, 3¢(w) is constant on the vertical line ®w = —1, on which two saddle points are located.
Consequently, we expect that a saddle point contour, defined by SP(w) = IP(w?) runs through
both saddles w™ and w~.

In Fig. 1 we give the contours of steepest descent and steepest ascent. The contour for P, starts
at —i> over the path indicated by ABC. The path for Q, runs along CBD, and the path for £,
along ABD. The integrals for P, and Q, pick up their main contribution at the saddle point w™,
whereas the integral for E,, obtains its main contribution at w*. From w~ two paths of ascent are
running to the poles at w = —1, w=0. The path from w* to +iocc through E is also a path of
ascent. The picture is made for the case z = 0.9.

In Fig. 2 we give the location of saddle points and the paths of steepest descent for the case
== 1.75. The saddle point contours are: 4B~ C~ for B,, C*B*D for 0,, AB-C~ UC"B*D for E, .

From 1w* two ascent paths run to the poles at w=—1, w=0, from w* two ascent paths run through
E* to ix.
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Fig. 1. The saddle point contours of the integral in (2.1) through the saddles at w* for the case = = 0.9: 4BC for P,
CBD for Q,, and ABD for E, .

D -1

T
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Fig. 2. The saddle point contours of (2.1) through the saddles at w* for the case = = 1.75. Saddle point contours are:
AB~C~ for B, C'B'D for Q,, AB~C~ UC’'B'D for E,...

We transform the integral into an Airy-type integral by using the cubic transformation

p(w)=—1 +ni + A4, (2.3)

where 4 and # do not depend on w and are determined by the condition that the saddle point wE
in the w-plane should correspond to the saddle points &,/ in the {-plane, i.e.

GOv ) =7+ A pvT) =T+ A (24)
This gives, using (2.2),

A=—-iz— 1+ 7 — In(22),

7’2 =t — tanh t = arctanh V1 — 22 — V1 — 22,

WD
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Fig. 3. The contours in the {-plane and points 4.B.C.D that correspond to the points on the contours on the w-plane of
Figs. 1 (with = = 0.9) and 2 (with = = 1.75), with saddle points (open circles) at +/1.

The contour in the w-plane is transformed into a contour, say %p, in the (-plane. In Fig. 3 we
show corresponding points of paths in both planes of the mapping defined in (2.3) for z = 0.9 and
- = 1.75. The path %4, used in (2.6) is the path through 4.B,C.

Integrating in the opposite direction on %p, which introduces a minus sign, we obtain

. | S P
P,,(Zl:n):—(—l)"n!e""*;—_/ e’ “hyg(0)dd, (2.6)
2T S
where
. 1 dw
g(o) = (2.7)

wiw + 1 ):i?.
We also have, by using (2.4),

dw (n—=Cmior +1)

& et D ow+ 1 (2.8)

and

n=_
2iw(w + 1)+ 2w+ 17

gl = (2.9)

A first approximation in terms of an Airy function follows by replacing ¢({) with g, = 7[q(\/_)-i-
g(—/n)]. We give the result for the three quantities together:

Pi2izn) ~ —nle" M (2zY'n ™ gy e A Al(gn? e,
0,2izn) ~ —nle" "2z "y *2’”3Ai(;7nz 3etimi 3y (2.10)

Eyn(2izn) ~ 40l "™ (2z)"'n™ " gy Ai(yn® ).
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In order to evaluate gy, we need in (2.7) dw/d{, evaluated at { =+, /. By using I'Hopital’s rule
in (2.8) we have

(dw>2 ‘ _ Viw(wh +1)

d¢ - tanh t
B n'* 1
I = e S o T D)
_21’1]/4

:\/tanh 7(1 4 e%7)
. 4 \'*
:—i\/EC_fr <] ’7~2> S

and

_ \/ﬁw‘(w' + 1)

(dw)2
d¢ e tanh t

g(v/=n)=

1’4 1

\/tanh T \/W (w-
—2in"

- Vtanh t(1 + e~?%7)
14
:—l\/_e+ ’ ( 4'1_'2> .

This gives

4 1/4
gO=~iﬁcosh%r< d ) . (2.11)

1 —22

We have mentioned that, when n=m, we may also use Sommerfeld-type integrals to do the asymp-
totic analysis of P,,Q, and E,,. This arises from the fact that P,0, and E,, can be expressed
in terms of Hankel and Bessel functions (cf. [5]). The asymptotic approximations obtained via the
Sommerfeld integral representations are the same as those in (2.10).

3. The general case
We write (1.1) in the form

—1)”"! ' —npin dW
Pn[(Z(n—E-m)]:(——EEi— / (§ M )m, (3.1)
Jt,

where

dw)=(1+0o)zw + Inw+aln(w + 1), o=, (3.2)
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and %, is a contour around the branch cut of Inw, that starts at w = 0 and terminates at o¢ in the
valley of exp(—zw). The saddle points are

wre ZOLREE )= - etz - e (3.3)

where ()€ (0,7) is the number that is defined by ¢ = tan’ %0. . ‘
We concentrate on values of z with Sz > 0, in particular on values near the point exp(i); when
- assumes this value, the two saddle points w* coincide. The cubic transformation

Plw) = -1 + 0l + 4, (3.4)

with corresponding points w = w* & (= £,/7], gives

Plz(n +m)] = (1) atem / " () de, (3.5)
2mi Jp
where
. 1 dw n—2{_
J)= ww+1)dd (+a)zww+ 1) +w+14+ow
= wt) = d(wT) (3.6)

+ 4
=(l—I—o):(w*—w‘)-l—lnfj—i-alnw *
W

wo+ 17
24=p(w") + d(w ™),
and %p is the image in the {-plane of the path Cy in the w-plane under the map defined in (3.4 ).
When z € (0,1), 6p has the form as in Fig. 3.
As will be explained in Section 5 we need information on the domain of holomorphy of /()

in order to be able to construct a uniform Airy-type expansion for P,[z(n + m)] when n is large,

in particular for values of z (or 1) where the zeros occur. We give more details on this point in
Section 3.

A first-order approximation reads
P,,[Z(H + m)] ~ _(_ 1 )n n! e—nA n—l/} .]/‘0 e—~2ni,r’3Ai(r]n2f3e—2ni/3 )’ (3.7 )
where

Jo=sLIGmM+ f(=vin]
with f given in (3.6).

3.1. The condition for the zeros

We compare the condition for the location of the zeros of the quantities PO, E,.. as given 1n

[11] with the condition that follows from the uniform Airy-type asymptotic approximation. Saff and
Varga introduce the quantity

4q°/! +05 @del2)

Tt otz + g @OF I =z + go2) P

wa(2) 0<o <o, (3.8)
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where ¢,(z) is defined in (3.3). Then the zeros of the three quantities £, O, E..n occur along curves
in the z-plane defined by

we(z)] = 1. (3.9)
By using the saddle points w* defined in (3.3), a straightforward computation shows that

(1+a)nw,(z)=—2p? = gIn(-1), (3.10)

where ‘3‘113"2 is defined in (3.6). The condition (3.9) can be read as: Inw,(z) is purely imaginary.

So an equivalent formulation of (3.9) reads: n*? is purely imaginary, i.e. the phase of 5 is £n or
+1m. In other words, 5 is located on the rays where the zeros occur of Ai(z), Ai(e*™3z).

3.2. An approximation of the zeros near z*

We show how to obtain an asymptotic approximation of the zeros of B,[z(n + m)] near z*. The
simpler case when n = m is shortly discussed in [5]. In Section 4.2 an approximation of all zeros
will be given. The Airy function Ai(z) has zeros at the negative axis; let a, denote these zeros.
Then the main approximant in (3.7) has zeros at

~2/3 21’3
ne=n "e™aq, s=123,....

The corresponding z-values follow from inverting the relation between # and z given in (3.6). The
first zeros (s small) give small values of #,, that is, values =, near z*. We expand

n=cz-z)+aE-")Y+-, (3.11)
and try to find ¢|,ca,... . From (3.6) it follows by differentiating with respect to z (after straight-
forward and lengthy calculations):

220" =—(1 +0)ga(2). (3.12
Squaring this equation and substituting (3.11), we obtain

) s Csinto

Azt Yel =" =z ) +a)., o =i—e "

cos? 50

where we use the relation between ¢ and () given after (3.3). The cubic root gives three possibilities:

sin' * 10
¢ = e::lni,3+rri/h—2i()r3 2

COS%U ., ¢e=-—1,01

The proper choice of ¢ follows from comparing this value of the coefficient with the one that follows
from expanding the arctanh function in (2.5), where ¢ =1 and 0 = %n, near z = | which gives

n=2"%(1-2)[1 + (1 —2)], z—1
(observe that in Section 2 P,(2izn) is considered). This gives
cos 10

Smi/6+2i0/3  —2/3
/6420013, -2

N — 0. (3.13)

4
Zy~Z — 4, ¢ 13 1)
sin'” 30
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When ) = im. ¢ =1 this gives

S~ i — [1\2-1 Re7rri (\”—Z 3

which confirms the expression for the first zeros of P,(2izn) obtained in [5, Eq. (2.14)] when we
turn that result over an angle im.

Approximation (3.13) for the zeros of P,[z(n + m)] is valid for small values of s. The zeros of

Onlz(n + m)] follow from multiplying the second term in the right- -hand side of (3.13) by ™3,
those of E, ,[z(n + m)] from multiplying this term by g3,

For a recent discussion on how to obtain approximations of zeros of Airy-type asymptotic expan-
sions, including order estimates of the remainders, we refer to [10].

4. More on Airy-type expansions

We first show how to obtain higher-order Airy-type approximations for integrals of a certain
standard form.

4.1. Complete asymptotic expansions

We consider
R =5 / 0 £ de, (4.1)

where ¢ is a contour running from oc exp(—%ni) to o0 exp(%ni), through the saddle point at { = /7].
We use the Bleistein method for obtaining a complete asymptotic expansion (this method was first
given in [2] for a different class of integrals).

We define two sequences of functions {/;}.{¢:}, k=0,1,2,... by writing

. . . . d
T =4k = B+ (¢ — mg(£), fA+|(t)—“F6/A(L..) (4.2)

with f, = f and 4;, B, following from substitution of { = +,/n. We have

—% Ji(/m) + fil(—=], By= — (4.3)
By substituting () = fy({) of (4.2) into (4.1) and integrating N-times by parts we obtain
N—1 Ak N—1 B
Fun) = Al )y == + Al () Y —5 +en (), (4.4)
k=0 k=0 -

where

D
sl = [ e A,

N 2mi

where Ai'(z) is the derivative of the Airy function. If f is analytic in a certain domain of the
complex plane, the functions f; are, by inheritance, analytic functions in the same domain. For
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proving that (2.4) gives a uniform asymptotic expansion as n— oo (in particular, uniformly valid
in a neighborhood of #=0), we need estimates of &y(y,n) in a neighborhood of %. In the cases
considered in this paper the parameters z and n are complex. For describing the zeros of P, and
O, z and 7 are restricted to compact sets, but the two infinite strings of zeros of E, , extend to
infinity.

Proofs for the asymptotic nature of uniform Airy-type expansions of integrals are considered in
several places in the literature; for instance, see [8, 15]. In [6] a new method for representing
the remainder and coeflicients in Airy-type expansions of integrals is given. This approach gives a
general method for extending the domain of the saddle-point parameter (# in the integral in (4.1))
to unbounded domains. A basic assumption for proving the validity of the uniform expansion in a
unbounded domain, say 1 € 4, is that the singularities of the function f should remain at a certain
distance from the saddle points at +,/7. To be more precise, let

p(n) = min{|{ £ /7| |{ is a singularity of f({)} .

Then the assumption is p(n) > |y|*, n€ 4, where the constant x should be larger than —%.
We discuss later this property for the integrals considered in this paper.

4.2. Asymptotic expansions of the zeros

We first consider the expansion of the zeros of a function W,(n) having the asymptotic expansion

W,(n) ~ Ai(nn™*)> AkT(k’Q + Ai (nn”) > Bi(m) (4.5)
k=0

k+1/3°
k=0 n

We write 7=o + &, where o =n"%3a,, with a, is a zero of the Airy function Ai(z). We write
o0 8m
W= —W,"(2)=0 (4.6)
e m!

and obtain expansions for the derivatives from (4.5), i.e., by using Ai"(z)=zAi(z2),

dm wl . AR o (s = Br(n)
I W,(n) ~n Al(’mm)z s T Al (’1"43) Z 2+1/3 ’
n = N =

where 4%(n) =Ax(n), BX(n)=Bi(n) and, for m=1,2,...,

d
Apmy=nBy" (n) + d—AZ’J'(n),
n (4.7)

m m— d m—
Bty =47~ (n) + - B{Z (n);
"
the functions with negative lower index are zero. Hence,

2. B"(a)
nk+1/3 ’

i VNG
- Wa(o) ~n Ai'(ay)
d?’, k=0
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and substituting this expansion in (4.6). we obtain the asymptotic equality

X OBi(x)  ne = Bi(z) me BA(oc) et & BA(oc) 0
= + = e TaD Dt SRR (48)
AZ:) nh et 20 e~ I EY — n
We try to find an expansion
X LA
e~ S S
noont
Substituting this in (4.8), we obtain for z, the relation
B()(l + B()( )+ B (3() + lB()(x) + O
Using the relations in (4.7), we obtain
By(n) =4y~ () =nBy ) =ndg ) =n’By T =
and for x; the equation
I .
cosh(v/2 2 ) By(2) + 7 sinh(v/22,) Ag(2) = 0.
This gives
\/_Bn(-’x
% = — —= arctanh —————. 4.9)
l \f Ao(2) (

Higher-order coefficients %, can be obtained, but we are satisfied with this first-order approximation.
We infer that the function W, (1), having an asymptotic expansion as given in (4.5), for large values
of n has a zero y, associated with the zero a, of the Airy function Ai(z), and we have found the
approximation

b
1]3.~1+—l, n— 2, (4.10)
n
with x =n"?%q, and x, given in (4.9).
The above analysis is based on [7], where the method is used for obtaining asymptotic approxi-
mations of the zeros of Bessel functions of large order. In the Bessel function case odd powers of

are absent in the two series in (4.5). This gives a much simpler analysis for obtaining an expansion
for the zeros.

4.3, Asymptotic expansions of the zeros of P,,O,.E,

h.m

When we use the above method for the quantity E,,[z(n + m)], which has an expansion o

the form (4.5), we have to calculate the zero z, after having obtained the value 1, in (4.10). The
corresponding z-value can be written as

S=n0n) = o+ e) =z(2) + —z/(2) —l— Na) 4 =) 4 AL + C(n7?), (4.11)
n

1" 2
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where z,(x) follows from inverting the relation between # and = given in (3.6), with 5 replaced by
%. After calculating z,(x) it is not difficult to obtain z/(2), because from (3.12) it follows that

dz
(1+ 0)gs(1) 8’;} = —2zn. (4.12)

When we denote the infinite set of zeros of E, ,[z(n + m)] in the upper half-plane by €, ms WE
obtain the approximation

@,,.,,,\——(n"l"m) “s(x)‘l" ( ) +0( —-) s=1,2,3...., (413)

where 2, is given in (4.9). This approximation holds uniformly with respect to s. There is a conjugate
set of zeros €, ., in the lower half-plane.

From (3.7) we see that P,[z(n + m)] has a complete expansion in terms of Airy functions with
argument nn? e~ ™3 It is not difficult to verify that in this case an approximation for the zeros is
given by (4.10) with 2 replaced by ¢z and x, evaluated as in (4.9) with this new value of 2.
An approximation for the corresponding z-value can then be obtained as in (4.11). For O, [z(n+m)]
the quantity o should be replaced by e™>" 3z,

The quantity x, used in the approximation of the zeros is given in (4.9). To use it we need the
coefficients A4y, By defined in (4.3) with f defined in (3.6). The quantities f(+./%) follow from a
similar analysis as used for (2.11). We have

amt
VI +0)g,Cyw wr +1)

(4"
VO +0)g,Cyw(w= + 1)

FG/m = f(=vn) =

where

| - 0 -z 1 —zcostl —yg,(z
WOt + 1) = cos 7+.41 ( )’ W 4 1)= cos , 9ol ).

- -

It follows that
VB _ (/) = f(=)
Ao(1) SO/ + (=)

VW D) = et + 1)
YW F D wT T D)

il

and (4.9) becomes in this case

1 .
%, = — arctanh e~

Nz
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5. More details on the cubic transformation (3.4)

The mapping w — {(w) defined in (3.4) is singular at the points w=0 and w= 1. These points
are mapped into infinity. It is of interest to locate finite singularities of the mapping that are mapped
to finite points in the {-plane. The singular points of the conformal mapping follow frqm the zeros
of d{/dw, see (3.6). The candidates are the saddle points w*, but these are regular points because
of the vanishing of # — (? at the corresponding points &,/7 in the {-plane. Less obvioqs candidates
are the points outside the principal sheets of the logarithms occurring in ¢(w). For instance, the
derivative d¢/dw again vanishes at the points wre*™, k= £ 1,%2,..., and these points are not
mapped to the points £,/ in the {-plane, because of Inw in ¢(w). The term In(w + 1) also gives
rise to singular points.

Putting w=w*e** k= 4 1,£2,... into (3.2) we obtain

dwre™ ) = (1 + o)w® + Inw* + 2mik + o In(w* + 1)
which reduces to 2mik + 2*? + A. The corresponding {-values can be obtained from the equation
2mik + 3= - 10+l 5.1)

For example, when z=1.75i, 0 =1, we have n=—-0.796... and n** = — 0.710...1. It follows that
(5.1) has solutions on the imaginary axis. For £ = =1 we obtain the solutions { = £4.846...1. These
points are singular points of the mapping (3.4). For the values of z,¢ in this example the saddle
points in the {-plane occur at £,/7=10.892...1i.

The possibility of constructing a valid uniform Airy-type expansion, as given in the previous
section, depends on the regularity of the function f({) in (4.1) in the neighborhood of the saddle
points at &,/ and the growth of f along the contours of steepest descent. Most important is the
regularity of f near the saddle points. In the above example we see saddle points at £0.892...1 and
nearby singularities at :4.846...1 (other singularities in this example are at larger distances from
the saddle points). The growth of f along the saddle point contours is at most of algebraic nature
(see (3.6)).

When z runs through compact sets of the half-plane $z>0, the singularities in the (-plane are
bounded away from the saddle points +,/%. For z— 0 and z — co (this is, in particular, important
for locating the zeros of E, ,(z)), the singularities approach the saddle points. This can be seen as
follows. We scale { by introducing y = {/\/n. Then (5.1) becomes

1= 30 =£3 + 2nikn ™2,

When 7 is large solutions occur near y = +1 satisfying y = +1 + O(n~¥*). It follows that solutions
in the {-plane satisfy

{=xyn+00n"), n—o0.

We see that the distance between the singularities and the saddle points is (/(5~"/#) as 5 becomes
large. According to theorems in Section 5 of [6] we can accept distances of order ¢ with () > — %
In the present case we have 0= — %, which is safe enough. We conclude that an expansion as in

(4.1) can be constructed for all points z with $z>0 (and, in fact, in a larger domain, but that is
not relevant here).
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{ - plane

w — plane

Fig. 4. Geometrical details of the mapping (3.4) with corresponding points in both planes. The black dots on the imaginary
axis are singularitics at { = +4.846 .. .1.

In Fig. 4 we show geometrical components of the mapping in (3.4) for o=1, z=1.75i. We
exclude small neighborhoods of the branch cuts from 0 to —ico and from —1 to —ioco and give
corresponding points in both planes. The arc from H to A in the {-plane corresponds to a large
circular arc in the w-plane from H to A, encircling the saddle points wE. The points B,C and F,G
tend to infinity in the (-plane, with arg({= F %TC, as the corresponding points tend to 0 and —1 in
the w-plane.

From the pictures it follows that the mapping is one-to-one on the boundary of the domain
in the w-plane that lies outside the thin neighborhoods of the branch cuts. Because the mapping
is analytic inside this domain and on the boundary, the mapping is univalent inside the domain
(see [13, p. 201]).

The black dots on the imaginary axis are singularities at {=+4.846...i corresponding to the
points wtet™  which are outside the principal sheet of Inw. For values of z on the positive
imaginary axis this principal sheet is defined by —im< argw <3m.

6. Numerical verification of the expansions for the zeros

In this section, we give more details on the computational aspects of the asymptotic estimate
given in (4.13), and we give information on the singularities of # defined in (3.6) as a function
of z.

For the expansion of ¢,,. , given in (4.13) we claimed that it holds for all zeros in the upper
planc. We can verify this by computing numerically the zeros of E, ,[z(n + m)] and compare the
results with the two-term expansion in (4.13). In the diagonal case n=m we can compare the zeros
of E, n[z(n + m)] with those of the Bessel function Jus12(—izn) since

E,,‘,,(Ziz) = (- 1 ) (22 )" V 2Tz C‘iz .],H,|/2(Z);

see (2.1) in [5]. The zeros of the J-Bessel function are easily computed, also when the order is
large.

When we take n =31, the first zero of J,;i2(—izn) on the positive imaginary axis has the
value z = 1.215727...i and the zero of E, .(2zn) computed with (4.13), with s=1, has the value
1.2157877...i, which gives an approximation with five corresponding digits (relative precision:
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0.000049). The accuracy improves steadily for the larger zeros. For s = 30 we pbtain 4:4957504.._i
and 4.4957801...i. for the numerical and asymptotic values, respectively, with relative precision
0.0000066. o . ‘

For the zeros of the polynomials P, and 0,, we can use the same approximation given in (4.13)
(with modifications as explained after (4.13)). When n=m=31 there are 15 complex zeros for
each polynomial in the upper half-plane and one real zero. The zero of P, clo§est to z=1 has the
value —0.154582... +0.916323...i (computed by Maple), and the approximation based on (4.13)
gives —0.154579... +0.916388...1 (which gives a relative precision of 0.00007). The real zero of
;’,, has the value —0.673442...., whereas (4.13) gives —0.673433 + 0.000017...1, which gives a
relative precision of 0.00017, mainly due to the imaginary part; the real part has a relative precision
of 0.000012, which is better than that of the first zero.

By inspecting more numerical results it follows that this time the zeros farther from z =1 become
less accurate (as they approach the real axis). Although we need only [%(n + 1)] zeros for the
polynomials (the other ones follow from conjugation), it is not as satisfactory as in the case of
E, ,(2zn), and we will explain what is going wrong.

First we observe that, apparently, we have two possibilities for computing all »n zeros of P,:

e by using (4.13) for s=1,2,....n;

e by using (4.13) for s=1,2,...,[%(n + 1)] and the remaining ones by using conjugation.

In addition to this we observe that we can continue the computations beyond s = 7, because the Airy
function has an infinite number of zeros. To explain this latter point, we remark that an approximation
as given in (3.7) can also be used for noninteger values of n (with proper interpretation of P, and
(—=1)"n!). The integrals in (1.1)-(1.3) define functions for general complex values of n and m,
and those functions (for instance, the Hankel functions in (2.1) in [4] (2.1) when n=m) have
an infinite number of zeros, unless n is an integer, when they have exactly n zeros; see also
(1. p. 373].

Also, when 7 is not an integer, the integrals in (1.1)—(1.3) define many-valued functions, and an
appropriate choice of a branch cut for the generalized function P, is the negative real axis. When
we compute more than the first-half of the zeros of this P, we have to interpret these zeros as lying
outside the principal sector, i.e., with argz > n. When » is an integer these [%n] zeros are exactly
the conjugates of those in the upper half-plane.

6.1. Singularities of n as function of z

Another point is that the quantity 1 defined in (3.6) becomes singular at z =e~. Recall that we
assumed that 7 vanishes at the point z=¢" and is analytic at this point. At z=e~" we see from
(3.3) that w™=w" and from (3.6) that 5 vanishes again. However, this is false in general: the
vanishing of 1 at z=e™" depends on the actual phase of z at this point.

When = follows the curve of the early zeros of P, in the left-hand plane, this curve crosses the
negative axis, and the values of w* and w™ are not equal when z arrives at z = e~ (in fact, their
phases are different). Consider again the diagonal case n=m, with 0= 1n. At z=i=e!™, we have
w'=w, but when z=—i=e" we have w/w~ =~ 2", )

In Fig. 5 we show the trajectories of the saddle points w (defined in (3.3)) when z runs through
the zeros of P, with n=m =31, starting near z =1 and ending at z= —i =e¢?™, with all zeros located
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Fig. 5. Trajectories of the saddle points w' (open dots) and w™ (black dots) when = runs through the zeros of P,, with
n=m=31. At B and £ the saddle points coincide when z = +i.

in the half-plane Rz <0. At B and E the saddle points coincide (when z = +i). The saddle point w*
describes a path from B to E, partly through the right-hand part of the plane, whereas w~ remains
in the left-hand half-plane.

We infer from (3.6) that at z=—i=e!™ the parameter 1 is given by 5’*= — 2ni, that is,
n=(3n/2)*?e~™3. Similarly, at z=—i=¢ ™ we have 5=(31/2)*2"™3. Now it is clear that,
when we compute the zeros of P, that lie in the lower half-plane 3z <0, the quantity n becomes
singular as we approach z = —i. This makes an approximation as in (4.13) less accurate for these
zeros, and it is better to use conjugation for the zeros of the polynomial P, in 3z <0. Approximation
(4.13) holds uniformly for all zeros of P, located in Sz > 0.

In the case that n =m, the relation for 5 given in (3.6) reads

1 + v z2
n _-l’__.l__’—___ _ \/] __'_22’

-1z

%i]“ =1
from which the role of the point z=—i (with phases it and —1m) can be read off.
The relations given in (3.12) and (4.12) for di/dz also show that the mapping z—n(z) is
not conformal when ¢, vanishes, except when z=¢". All points z=e"**" ft=1,2,3,... and
z=e AN g =0,1,2,... give singular points on the extended Riemann sheet of 5(z).

7. Concluding remarks

In a forthcoming paper on the quadratic Hermite—Padé Type | approximations associated with the
exponential function the polynomials P,, 0, and R,. having degrees n, m and s respectively, with
P, monic, that solve the approximation problem

Emm‘(z) = P,,(Z)(?-Z: + Q,,,(Z)C#: + RS(Z) =( (:“H,HHJ) as z— 0‘

will be investigated for their asymptotic behavior and zero distribution. The quantities Py, Oy, R,
and E,,, have integral representations that are of a similar type as the ones given in (1.1)—=(1.3).
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More details can be found in [4], which is a preliminary study of this problem. Many properties of

the quantities P,. O, R, and E,, are derived in that paper. B _

The present investigations have been done in order to become familiar with the more complicated
methods from uniform asymptotics for obtaining information on the zeros of P,, Oy, R, and E,,,,.
of the Hermite—Padé case. We could have obtained the results of the present paper by considering
the quantities defined in (1.1)~(1.3) as confluent hypergeometric functions, and by considering
the differential equation for this class of special functions. In that way we might have used the
powerful methods to obtain Airy-type expansions, including error bounds for the remainders, that
are developed in [8]. However, for the Hermite—Padé case an approach based on linear differential
equations seems not to be available.
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